Multivariate Time Series Forecasting pada Penjualan Barang Retail dengan Recurrent Neural Network
Abstract
Full Text:
PDF (Bahasa Indonesia)References
M. Yanto, E. Praja Wiyata Mandala, and D. Eka Putri, “Peramalan Penjualan Pada Toko Retail Menggunakan Algoritma Backpropagation Neural Network,†MEDIA INFORMATIKA BUDIDARMA, vol. 2, no. 3, pp. 110–117, 2018.
“Indonesia Retail Market to grow at a CAGR of 4% | CT Corp. and PT Erajaya Swasembada Tbk emerge as Some Key Contributors to growth | 17000 + Technavio Reports.†https://www.prnewswire.com/news-releases/indonesia-retail-market-to-grow-at-a-cagr-of-4--ct-corp-and-pt-erajaya-swasembada-tbk-emerge-as-some-key-contributors-to-growth--17000--technavio-reports-301399662.html (accessed Nov. 10, 2021).
S. Ren, H. L. Chan, and T. Siqin, “Demand forecasting in retail operations for fashionable products: methods, practices, and real case study,†Annals of Operations Research, vol. 291, no. 1–2, pp. 761–777, Aug. 2020, doi: 0.1007/s10479-019-03148-8.
T. Ma, C. Antoniou, and T. Toledo, “Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast,†Transportation Research Part C: Emerging Technologies, vol. 111, pp. 352–372, Feb. 2020, doi: 0.1016/j.trc.2019.12.022.
H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network for demand forecasting,†Computers and Industrial Engineering, vol. 143, May 2020, doi: 10.1016/j.cie.2020.106435.
A. Cecaj, M. Lippi, M. Mamei, and F. Zambonelli, “Comparing Deep Learning and Statistical Methods in Forecasting Crowd Distribution from Aggregated Mobile Phone Data,†Applied Sciences, vol. 10, no. 18, p. 6580, Sep. 2020, doi: 10.3390/app10186580.
“CS 230 - Recurrent Neural Networks Cheatsheet.†https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks (accessed Nov. 16, 2021).
L. Wiranda and M. Sadikin, “PENERAPAN LONG SHORT TERM MEMORY PADA DATA TIME SERIES UNTUK MEMPREDIKSI PENJUALAN PRODUK PT. METISKA FARMA,†Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha, vol. 8, no. 3, pp. 184–196, 2019, [Online]. Available: https://ejournal.undiksha.ac.id/index.php/janapati/article/view/19139
J. Huber and H. Stuckenschmidt, “Daily retail demand forecasting using machine learning with emphasis on calendric special days,†International Journal of Forecasting, vol. 36, no. 4, pp. 1420–1438, Oct. 2020, doi: 10.1016/j.ijforecast.2020.02.005.
U. Ugurlu, I. Oksuz, and O. Tas, “Electricity Price Forecasting Using Recurrent Neural Networks,†Energies (Basel), vol. 11, no. 5, p. 1255, May 2018, doi: 10.3390/en11051255.
S. Zahara and Sugianto, “Peramalan Data Indeks Harga Konsumen Berbasis Time Series Multivariate Menggunakan Deep Learning,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 24–30, Feb. 2021, doi: 10.29207/resti.v5i1.2562.
D. A. Lusia and A. Ambarwati, “PERBANDINGAN PERAMALAN UNIVARIAT DAN MULTIVARIAT ARIMA PADA INDEKS HARGA SAHAM GABUNGAN,†Jurnal Statistika Universitas Muhammadiyah Semarang, vol. 6, no. 2, pp. 78–84, 2018, [Online]. Available: http://finance.yahoo.com/q/hp?s=%5JKS
A. Nurlifa and S. Kusumadewi, “Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky,†INOVTEK Polbeng - Seri Informatika, vol. 2, no. 1, p. 18, Jun. 2017, doi: 10.35314/isi.v2i1.112.
M. Abdul Dwiyanto Suyudi, E. C. Djamal, A. Maspupah Jurusan Informatika, and F. Sains dan Informatika Universitas Jenderal Achmad Yani Cimahi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,†Seminar Nasional Aplikasi Teknologi Informasi (SNATi), pp. 1907–5022, 2019.
A. Chawla, A. Singh, A. Lamba, N. Gangwani, and U. Soni, “Demand forecasting using artificial neural networks—A case study of american retail corporation,†in Advances in Intelligent Systems and Computing, vol. 697, Springer Verlag, 2019, pp. 79–89. doi: 10.1007/978-981-13-1822-1_8.
R. Khaldi, A. el Afia, R. Chiheb, and R. Faizi, “Artificial Neural Network Based Approach for Blood Demand Forecasting: Fez Transfusion Blood Center Case Study,†in BDCA’17: Proceedings of the 2nd international Conference on Big Data, Cloud and Applications, Mar. 2017, vol. Part F129474. doi: 10.1145/3090354.3090415.
D. Tarkus, S. R. U. A. Sompie, and A. Jacobus, “Implementasi Metode Recurrent Neural Network pada Pengklasifikasian Kualitas Telur Puyuh,†Jurnal Teknik Informatika, vol. 15, no. 2, pp. 137–144, 2020.
S. Alhirmizy and B. Qader, “Multivariate Time Series Forecasting with LSTM for Madrid, Spain pollution,†in 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), 2019, pp. 1–5. doi: 10.1109/ICCISTA.2019.8830667.
A. Saxena and T. R. Sukumar, “Predicting bitcoin price using lstm And Compare its predictability with arima model,†International Journal of Pure and Applied Mathematics, vol. 119, no. 17, Feb. 2018, doi: 10.13140/RG.2.2.15847.57766.
A. Hanifa, S. A. Fauzan, M. Hikal, and M. B. Ashfiya, “PERBANDINGAN METODE LSTM DAN GRU (RNN) UNTUK KLASIFIKASI BERITA PALSU BERBAHASA INDONESIA,†Dinamika Rekayasa, vol. 17, no. 1, pp. 33–39, 2021, doi: 10.20884/1.dr.2021.17.1.436.
G. Ayuni and D. Fitrianah, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ,†Jurnal Telematika, vol. 14, no. 2, pp. 79–86, 2020, [Online]. Available: https://journal.ithb.ac.id/telematika/article/view/321
S. J. Taylor and B. Letham, “Forecasting at Scale,†The American Statistician, vol. 72, no. 1, pp. 37–45, Jan. 2018, doi: 10.1080/00031305.2017.1380080.
DOI: https://doi.org/10.35314/isi.v7i1.2398
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.