PREDIKSI NILAI PENGADAAN BARANG DAN JASA PADA SEBUAH PERUSAHAAN PARIWISATA MENGGUNAKAN METODE ARIMA DAN FUZZY TIME SERIES
Abstract
PT XYZ does not have a tested evaluation metric to measure the accuracy of procurement prediction models. This research aims to find a suitable metric by comparing two methods: Autoregressive Integrated Moving Average (ARIMA) and Fuzzy Time Series (FTS). Both methods were chosen based on the ability of ARIMA to handle time patterns and trends, and the flexibility of FTS in dealing with uncertainty in procurement values. The research uses Root Mean Squared Error (RMSE) values to measure prediction accuracy. The ARIMA implementation analyzes historical data to forecast patterns, while FTS accommodates fluctuations and uncertainties, allowing for more adaptive and accurate predictions. The analysis results show that the ARIMA model has an AIC value of 3953.57 and a residual value of 3351745.26, while FTS has a residual of -224.79. The RMSE evaluation shows the ARIMA value of 3351745.30 and FTS of 224793895.00. The predicted value of ARIMA is 440,326,255, while FTS is 668,471,895. Based on these results, FTS shows superior prediction accuracy compared to ARIMA. FTS is recommended to be implemented at PT XYZ due to its ability to effectively manage uncertainty and fluctuations in procurement values, enabling more accurate strategic decisions. Further research is needed to understand the factors that influence the performance difference between these two methods.
Full Text:
PDFReferences
L. W. Mustikawati, Sistem Prediksi Pengadaan Barang Dengan Menggunakan Metode K-Mean dan Metode Tsukamoto Pada Percetakan Surya Digital Printing, vol. 01, no. 08. 2017.
D. Febrian, D. Kartika, D. Agnes, and J. Nainggolan, “Peramalan Jumlah Wisatawan Mancanegara Yang Datang Ke Sumatera Utara dengan Fuzzy Time Series,†KUBIK J. Publ. Ilm. Mat., no. September, 2021, doi: 10.15575/kubik.v6i1.10604.
I. Pujiono, “Model Perencanaan Kas Pemerintah Pusat Menggunakan Metode Anfis dan ARIMA: Studi pada Satuan Kerja Wilayah Bayar Provinsi DKI Jakarta,†Indones. Treasure Rev. J. Perbendaharaan, Keuang. Negara dan Kebijak. Publik, vol. 9, no. 1, pp. 57–69, 2024.
S. Hajar, M. Badawi, Y. D. Setiawan, M. Noor, and H. Siregar, “Prediksi Perhitungan Jumlah Produksi Tahu Mahanda dengan Teknik Fuzzy Sugeno,†J. Sains Komput. Inform., vol. 4, no. 1, pp. 210–219, 2020.
H. Hidayatullah, F. Sukaesih, Y. A. Hizbullah, and T. A. Munandar, “Implementasi Metode ARIMA Data Warehouse Untuk Prediksi Permintaan Suku Cadang,†J. Ris. Inform. dan Teknol. Inf., vol. 1, no. 1, pp. 30–37, 2023.
D. F. Ayudya and D. R. S. Saputro, “Model Hibrida ARIMA dan Fuzzy Time Series Markov Chain,†Semin. Mat. dan Pendidik. Mat. UNY 2017, pp. 17–22, 2017, [Online]. Available: http://seminar.uny.ac.id/semnasmatematika/sites/seminar.uny.ac.id.semnasmatematika/files/full/S-3.pdf
A. A. Wiliyana and Darsyah, Perbandingan Metode ARIMA Dan MOVING AVERAGE Pada Kasus Harga Gula Pasir Di Jakarta, vol. 1. 2018.
L. Wiranda, M. Sadikin, J. T. Informatika, and F. I. Komputer, Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk PT. Mestika Farma, vol. 8. 2019.
D. P. Sugumonrong, A. Handinata, and A. Tehja, Prediksi Harga Emas Menggunakan Metode Fuzzy Time Series Model Algoritma Chen, vol. 1, no. 1. 2019.
M. R. Ramadhan and H. Novriando, Implementasi Fuzzy Time Series pada Prediksi Jumlah Penjualan Rumah Fuzzy Time Series Implementation in Predicting Number of Home Sales, vol. 08, no. 4. 2020. doi: 10.26418/justin.v8i4.40186.
C. M. Gibran, S. Setiyawati, and F. Liantoni, Prediksi Penambahan Kasus Covid-19 di Indonesia Melalui Pendekatan Time Series Menggunakan Metode Exponential Smoothing, vol. 6, no. 1. 2021.
S. Yunita, N. A. Mahesti, R. M. B. Sihaloho, and R. Setyadi, “Forecasting Pada Rantai Pasok Pabrik Penggilingan Daging Menggunakan Metode Time Series,†JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 3, p. 761, 2022, doi: 10.30865/jurikom.v9i3.4221.
S. D. Laskarjati and I. S. Ahmad, “Perbandingan Peramalan Harga Saham menggunakan Autoregressive Intergrated Moving Average (ARIMA) dan Fuzzy Time series Markov Chain (Studi Kasus: Saham PT Indofood CBP Sukses Makmur Tbk),†J. Sains dan Seni ITS, vol. 11, no. 6, 2023, doi: 10.12962/j23373520.v11i6.91417.
E. M. Nainggolan, S. Mardiana, U. M. Area, and P. B. Pengadaan, “Implementasi Kebijakan Pengadaan Barang/Jasa Pemerintah Tentang Program Bela Pengadaan,†PUBLIK J. Manaj. Sumber Daya Manusia, Adminsitrasi dan Pelayanan Publik Univ. Bina Taruna Gorontalo, vol. 10, no. 1, pp. 1–16, 2023.
U. K. Petra, “Pola Data,†pp. 5–10, 2017.
DOI: https://doi.org/10.35314/isi.v9i1.4041
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.