Estimasi Lintasan AUV 3 Dimensi (3D) Dengan Ensemble Kalman Filter
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Yuh, J. (1994), “Learning Control for Underwater Robotic Vehiclesâ€, IEEE Control Systems Magazine, Vol. 14 No. 2, hal. 39-46.
Von Alt, C. (2003). “Autonomous Underwater Vehiclesâ€, The Autonomous Underwater Lagrangian Platforms and Sensors Workshop, Woods Hole Oceanographic Institution, United States.
Ermayanti, Z., Apriliani, E., and Nurhadi, H. (2014) Estimate and Control Positon on The Autonomous UnderwaterVehicle Based on Determined Trajectory. Thesis of Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
Ngatini. 2017. Ensemble and Fuzzy Kalman Filter for Position Estimation of an Autonomous Underwater Vehicle Based on Dynamical System of AUV Motion. J. Expert Systems with Applications. Vol. 68. Issue 7, pp. 29-35.
Lewis, J. M., Laksmivarahan, S. and Dhall, S. (2006), Dynamic Data Assimilation, A Least Square Approach, Cambridge University Press, New York.
Ngatini, Apriliani, E., & Nurhadi, H. (2016). The Position Estimation of AUV Based on Non-Linear Ensemble Kalman Filter. Proceeding Basic 2016, Fakultas Matematika dan Ilmu Pengetahuan Alam: 6 (hal. 382-386). Indonesia: Universitas Brawijaya. 2338-0128.
Herlambang, T., Djatmiko, E. B. And Nurhadi, H. 2015. Ensemble Kalman Filter with a Square Root Scheme (EnKF-SR) for Trajectory Estimation of AUV SEGOROGENI ITS, International Review of Mechanical Engineering (I.RE.M.E), Vol. 9, No. 6 ISSN 1970-8734.
Yang, C. (2007), Modular Modelling and Control for Autonomous Underwater Vehicle (AUV). Thesis of Department of Mechanical Engineering, National University of Singapore.
Ataei, M., Koma, A. Y., 2014. Three-Dimensional Optimal Path Planning for Waypoint Guidance of an Autonomous Underwater Vehicle. J. Robotics and AutonomousSystems.
Apriliani, 2014. Metode Asimilasi Data: Salah Satu Penerapan Matematika dalam Bidang Lingkungan Hidup. Surabaya: Matematika ITS.
Apriliani, E., Arif, D. K., & Sanjoyo, B. A. (2010). The square root ensemble Kalman Filter to estimate the concentration of air pollution. Proceedings of the 2010 IEEE, international conference on mathematical application in engineering (ICMAE’10), kuala lumpur, Malaysia.
Lewis, L. F., 1986, “Optimal Estimation, with an introduction to stochastic control theoryâ€, John Wiley and Sons, New York.
Heemink, A.W., 1986, “Storm surge prediction using Kalman filteringâ€, Thesis, Twente University, The Netherlands.
Verlaan, M., Heemink, A.W. 1997, “Tidal Flow Forecasting Using Reduced Rank Square Root Filtersâ€, Stochastic Hydrologi and Hydraulics, No.11: pp. 349-368
Apriliani, E., 2001, “The Estimation of The Water Level by The Reduced Rank Square Root Information Filterâ€, Proceedings of the Asia – Pasific Vibration Conference, vol II, Jilin Science and Technology Press, China
Apriliani, E., Sanjoyo, B.A., Adzkiya, D., 2011a, “The Groundwater Pollution Estimation by the Ensemble Kalman Filterâ€, Canadian Journal on Science and Engineering Mathematics, Juni, 2011
Apriliani, E. Hanafi, L., Wahyuningsih, N.,2011b, “Metode Estimasi Penyebaran Polutanâ€, Jurnal Purifikasi, Vol 12. No 2, Desember 2011
Evensen, G. 2003. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. J. Ocean Dynamics. Vol.53. No.4, 343-367.
DOI: https://doi.org/10.35314/isi.v4i1.774
Refbacks
- There are currently no refbacks.