Klasifikasi Tulang Tengkorak Berdasarkan Jenis Kelamin dalam Antropologi Forensik Menggunakan Metode Support Vector Machine
Abstract
Classification of skull bones by sex is part of human biological profile identification in forensic anthropology that aims to determine whether the skeleton belongs to a male or female. The most popular method for determining sex from bones is DNA analysis. However, under some conditions such as burnt, damaged, or very dry skeletal remains, DNA analysis cannot provide accurate results. So forensic anthropology is developing by utilizing the help of machine learning technology. This research shows the performance of Support Vector Machine in classifying skull bones based on gender. The skull parameter data used is data collected by Dr. William Howells from craniometric measurements consisting of male and female data with a total of 2524 data and 82 features, namely bizygomatic breadth, glabello-occipital lenght and others. In building the skull bone classification model, the Support Vector Machine kernels used are linear, RBF, and polynomial. Based on the test results, the best accuracy was obtained in each kernel function, namely the linear kernel obtained the best accuracy of 88.14% with C = 2. For the RBF kernel, the best accuracy was 91.30% at C = 2, γ = 'auto'. For the polynomial kernel, the best accuracy was 88.14% at C = 1 and 2, γ = 1 and 2, d = 1. The evaluation results show that the Support Vector Machine model with the RBF kernel has proven to be the optimal choice in skull bone classification compared to other kernels, based on accuracy, precision, recall, and CrossValidation measurements reaching values above 90%. These results indicate that the skull bone classification model based on gender using Support Vector Machine is recommended in forensic anthropology.
Full Text:
PDF (Bahasa Indonesia)References
N. V. P. E. J. B. Angi M. Christensen, Forensic Anthropology: Current Methods and Practice, Second Edition. London, United Kingdom: Stacy Masucci, 2019.
J. Bewes, A. Low, A. Morphett, F. D. Pate, and M. Henneberg, “Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls,†J Forensic Leg Med, vol. 62, pp. 40–43, Feb. 2019, doi:
1016/j.jflm.2019.01.004.
D. Nasien, M. H. Adiya, I. Afrianty, N. A. Ali, A. A. Samah, and Y. Rahayu, “Determination of Sex and Race in Forensic Anthropology: A Comparison of Artificial Neural Network and Support Vector Machine,†in 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), IEEE, Sep. 2021, pp. 51–55. doi: 10.1109/IC2IE53219.2021.9649182.
B. Ramamoorthy, M. M. Pai, L. V. Prabhu, B. V. Muralimanju, and R. Rai, “Assessment of craniometric traits in South Indian dry skulls for sex determination,†J Forensic Leg Med, vol. 37, pp. 8–14, Jan. 2016, doi: 10.1016/j.jflm.2015.10.001.
J. Tetteh, A. K. Appiah, C. S. Abaidoo, and C. Adjei-Antwi, “The forensic use of percutaneous femur length in height and sex estimation among Ghanaians,†Forensic Science International: Reports, vol. 4, p. 100234, Nov. 2021, doi: 10.1016/j.fsir.2021.100234.
İ. Güven and F. Şimşir, “Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ANN) and support vector machines (SVM) methods,†Comput Ind Eng, vol. 147, p. 106678, Sep. 2020, doi: 10.1016/j.cie.2020.106678.
Arthy, Rohit Goel, and Sreenivas M, “Determination of Sex by Osteometry of Third Metatarsal,†Indian Journal of Forensic Medicine & Toxicology, vol. 14, no. Vol. 14 No. 3 (2020): Indian Journal of Forensic Medicine & Toxicology, Jul. 2020, doi: 10.37506/ijfmt.v14i3.10315.
P. Mesejo, R. Martos, Ó. Ibáñez, J. Novo, and M. Ortega, “A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification,†Applied Sciences, vol. 10, no. 14, p. 4703, Jul. 2020, doi: 10.3390/app10144703.
W. Yang, M. Zhou, P. Zhang, G. Geng, X. Liu, and H. Zhang, “Skull Sex Estimation Based on Wavelet Transform and Fourier Transform,†Biomed Res Int, vol. 2020, pp. 110, Jan. 2020, doi: 10.1155/2020/8608209.
A. L. Dallora, P. Anderberg, O. Kvist, E. Mendes, S. Diaz Ruiz, and J. Sanmartin Berglund, “Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis,†PLoS One, vol. 14, no. 7, p. e0220242, Jul. 2019,
doi: 10.1371/journal.pone.0220242.
E. Nikita and P. Nikitas, “On the use of machine learning algorithms in forensic anthropology,†Leg Med, 10.1016/j.legalmed.2020.101771.
DARMILA, IIS AFRIANTY, SUWANTO SANJAYA, RAHMAD ABDILLAH, IWAN ISKANDAR, and FADHILAH SYAFRIA, “EVALUASI PERBANDINGAN PERFORMANSI LVQ 1, LVQ 2, DAN LVQ 3 DALAM KLASIFIKASI JENIS KELAMIN MENGGUNAKAN TULANG TENGKORAK,†Jurnal INSTEK (Informatika Sains dan Teknologi), vol. 7, no. 2, pp. 344–353, Oct. 2022, doi: 10.24252/instek.v7i2.32659.
Y. Harni, I. Afrianty, S. Sanjaya, R. Abdillah, F. Yanto, and F. Syafria, “Performance Analysis of LVQ 1 Using Feature Selection Gain Ratio for Sex Classification in Forensic Anthropology,†Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3625.
Surya Aditya GD, Iis Afrianty, and Suwanto Sanjaya, “Perbandingan Performansi Dengan Metode Corelation Based Feature Selection Pada LVQ 2,†Jurnal INSTEK (Informatika Sains dan Teknologi), vol. 8, no. https://journal.uinalauddin.ac.id/index.php/instek/issue/view/2039, pp. 170–179, Apr. 2023.
I. Afrianty, D. Nasien, and H. Haron, “Performance Analysis of Support Vector Machine in Sex Classification of The Sacrum Bone in Forensic Anthropology,†JURNAL TEKNIK INFORMATIKA, vol. 15, no. 1, pp. 63–72, Jun. 2022, doi: 10.15408/jti.v15i1.25254.
W. Yang, M. Zhou, P. Zhang, G. Geng, X. Liu, and H. Zhang, “Skull Sex Estimation Based on Wavelet Transform and Fourier Transform,†Biomed Res Int, vol. 2020, pp. 110, Jan. 2020, doi: 10.1155/2020/8608209.
O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz, and S. Rimer, “Power system events classification using genetic algorithm based feature weighting technique for support vector machine,†Heliyon, vol. 7, no. 1, p. e05936, Jan. 2021, doi: 10.1016/j.heliyon.2021.e05936.
J. Cervantes, F. Garcia-Lamont, L. RodrÃguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,†Neurocomputing, vol. 408, pp. 189–215, Sep. 2020, doi: 10.1016/j.neucom.2019.10.118.
I. Afrianty, D. Nasien, M. R. A. Kadir, and H. Haron, “Back-Propagation Neural Network for Gender Determination in Forensic Anthropology,†2015, pp. 255–281. doi: 10.1007/978-3-319-11017-2_11.
W. Budiharto, Machine Learning & Computational Intelligence / Widodo Budiharto. Yogyakarta: Penerbit Andi, 2016.
I. M. Parapat, M. T. Furqon, and S. Sutrisno, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,†Jurnal Pengembangan Teknologi Informasi Ilmu Komputer, vol. 2, no. 10, pp. 3163–3169, Oct. 2018.
A. Z. Praghakusma and N. Charibaldi, “Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter (Studi Kasus : Komisi Pemberantasan Korupsi),†JSTIE (Jurnal Sarjana Teknik Informatika) (E-Journal), vol. 9, no. 2, p. 88, Jun. 2021, doi: 10.12928/jstie.v9i2.20181.
D. Singh and B. Singh, “Feature wise normalization: An effective way of normalizing data,†Recognit, 10.1016/j.patcog.2021.108307.
V. N. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer New York, 2000. doi: 10.1007/978-1-4757-3264-1.
B. Yang, R. Gong, L. Wang, and S. Yang, “WITHDRAWN: Support vector machine in image recognition of nursing methods for critically ill blood purification,†Microprocess Microsyst, p. 103398, Nov. 2020, doi: 10.1016/j.micpro.2020.103398.
DOI: https://doi.org/10.35314/isi.v9i1.4046
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.