Prediksi Harga Bitcoin Menggunakan Algoritma Long Short Term Memory (LSTM)

Febriansyah Febriansyah, Alun Sujjada, Falentino Sembiring

Abstract


Cryptocurrency is a digital currency made from sequence code or called blockchain, one of the cryptocurrencies is bitcoin. Prediction is a process that projects or imagines what might happen in the future based on data in the past or factors that influence the current situation. Bitcoin price prediction uses a deep learning approach with the Long Short Term Memory method. Long Short-Term Memory is a type of model from the Recurrent Neural Network (RNN) algorithm, a method designed to process data and can overcome the problem of price movements that have long-term dependencies that cannot be handled by traditional RNN models, the LSTM model has the ability “Remembers” information over long periods of time, so as to recognize patterns and trends. In this study, the prediction period used a dataset from 12 December 2020 to 14 April 2024. The evaluation results for the RMSE method for train data were 17318.40 and for test data were 27921.84 and for the MAPE method for train data it was 3.24% and for test data it was 3.24%. 5.36%. This shows that the RMSE and MAPE values in the data train are relatively small because they are vulnerable to the bitcoin price being too wide.


References


M. F. Rizkilloh, Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM), 2022.

Pratama, PENDEKATAN DEEP LEARNING MENGGUNAKAN METODE LSTM UNTUK PREDIKSI HARGA BITCOIN, 2023.

C. Sumarga, Jurnal Ilmu Komputer dan Sistem Informasi Rancangan Sistem Prediksi Harga Saham dengan Menggunakan Metode LSTM dan ARMA klasik.

Yunizar, Coding : Jurnal Komputer dan Aplikasi PENERAPAN METODE RECURRENT NEURAL NETWORK MODEL GATED RECURRENT UNIT UNTUK PREDIKSI HARGA CRYPTOCURRENCY [1].

2006.14473.

E. U. Andreas F, PERBANDINGAN ALGORITMA LINEAR REGRESSION, NEURAL NETWORK, DEEP LEARNING, DAN K-NEAREST NEIGHBOR (K-NN) UNTUK PREDIKSI HARGA BITCOIN, 2022.

A. I. D. M. P. H. B. D. M. R. N. N. P. P. INDODAX, ANALISIS INVESTASI DALAM MEMPREDIKSI PERGERAKAN HARGA BITCOIN DENGAN MENGGUNAKAN RECURRENT NEURAL NETWORK PADA PLATFORM INDODAX, 2022.

F. Sembiring, D. Gustian, A. Erfina and Y. Vikriansyah, Analisis Tingkat Akurasi Algoritma Moving Average dalam Prediksi Pergerakan Uang Elektronik Bitcoin.

Y. S. David Wibowo and R. Somya, Penerapan Data Mining Untuk Memprediksi Harga Cryptocurrency Ethereum Menggunakan Metode Backpropagation Neural Network, 2023.

F. R. S. B. I, Prediksi Nilai Cryptocurrency Bitcoin menggunakan Algoritme Extreme Learning Machine (ELM), 2019.

L. M. Rasdi Rere and H. dan Rozi, STUDI PREDIKSI HARGA BITCOIN MENGGUNAKAN RECURRENT NEURAL NETWORK, 2022.

N. A, Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45, 2022.

I. N. H. T. E, IMPLEMENTASI ORANGE DATA MINING UNTUK PREDIKSI HARGA BITCOIN, 2022.

T. A. N. F, PREDIKSI HARGA EMAS MENGGUNAKAN METODE LSTM DAN GRU, 2023.

A. I. I, Prediksi Harga Saham Twitter Dengan Long Short-Term Memory Recurrent Neural Network, 2022.

L. Y. Z. H, Enhancing bitcoin price fluctuation prediction using attentive LSTM and embedding network, 2020.




DOI: https://doi.org/10.35314/isi.v9i1.4247

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Crossref logo Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: jurnalinformatika@polbeng.ac.id
www.polbeng.ac.id

Web
Analytics
View My Stats